

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

EXTRACTION AND SEPARATION OF Ti(IV) USING THIOPHOSPHINIC ACIDS AND ITS RECOVERY FROM ILMENITE AND RED MUD

Akash Deep^a; Poonma Malik^a; Bina Gupta^a

^a Department of Chemistry, University of Roorkee, Roorkee, India

Online publication date: 31 March 2001

To cite this Article Deep, Akash , Malik, Poonma and Gupta, Bina(2001) 'EXTRACTION AND SEPARATION OF Ti(IV) USING THIOPHOSPHINIC ACIDS AND ITS RECOVERY FROM ILMENITE AND RED MUD', *Separation Science and Technology*, 36: 4, 671 — 685

To link to this Article: DOI: 10.1081/SS-100102953

URL: <http://dx.doi.org/10.1081/SS-100102953>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

EXTRACTION AND SEPARATION OF Ti(IV) USING THIOPHOSPHINIC ACIDS AND ITS RECOVERY FROM ILMENITE AND RED MUD

Akash Deep, Poonma Malik, and Bina Gupta*

Department of Chemistry, University of Roorkee,
Roorkee, India

ABSTRACT

This paper embodies details on the extraction behavior of Ti(IV) along with Mg(II), Mn(II), Fe(III), Al(III), Ce(IV), and V(V) from hydrochloric acid medium employing mono- and di-sulphur analogues of bis-(2,4,4-trimethylpentyl) phosphinic acid, namely bis-(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302) and bis-(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301). The effect of various parameters, such as the concentration of the acid, metal ion, and extractant, and the nature of the diluent on the extraction of Ti(IV) has been investigated. Almost quantitative extraction of Ti(IV) is observed in both the extractants in the 1×10^{-2} to 0.5 M acidity range. The extractants can hold the metal ion up to one-tenth of its molar concentration. The extracting species is proposed to be $\text{Ti}(\text{OH})_2 \text{R}_2$, (HR = Cyanex 301/Cyanex 302). The partition data have been utilized for obtaining some binary separations of Ti(IV) from some commonly associated metal ions. The practical utility of the extractant has been demonstrated by recovering Ti(IV) from ilmenite and red mud.

*Corresponding author. E-mail: bvgcyfcy@rurkiu.ernet.in

Key Words: Solvent Extraction; Thiophosphinic acids; Ti(IV); Ilmenite; Red mud.

INTRODUCTION

Titanium is an important constituent of several alloys and catalysts. There is an ever-increasing demand for this metal in high purity. Because of its widespread use, the primary sources are becoming exhausted and efficient methods have to be developed to recover it from low-grade ores and secondary sources. Viewing the high purity requirements of the metal, solvent extraction offers an attractive alternative. Over the years a variety of compounds, such as molten biphenyl(1), amidines(2), catechol(3), alizarin RS(4), have been employed for the extraction and separation of Ti(IV), but in most of these cases, different ions cause serious interference, and a strict control of pH is required. High molecular weight amines (5–7) have also been used for the extraction and separation of Ti(IV); however, their utility is restricted because of the problem of emulsion formation and interferences from coexisting metal ions. Among the organophosphorus extractants, DEHPA has been employed for the extraction and separation of Ti(IV) from chloride and phosphate media (8–10). Recently Phalke et al. (11) also employed DEHPA for the extraction of Ti(IV) from sulphate media and applied the method for its recovery from ores. Biswas and Begum (12) used kerosene solutions of DEHPA for the extraction of Ti(IV) from chloride medium. Jayachandran and Dhadke (13) employed toluene solution of 2-ethylhexyl phosphoric acid mono 2-ethylhexyl ester for the extraction of Ti(IV) from sulphate medium and proposed the extracting species. TBP and TOPO have been explored by Allal and Huachard (14) for the extraction of Ti(IV) from chloride media, but the requirement of a high extractant concentration discourages the commercial use of the extractants. In the 1980s mono- (Cyanex 302) and di-sulphur (Cyanex 301) analogues of bis-(2,4,4 trimethylpentyl) phosphinic acid (Cyanex 272) were introduced in the market. These extractants have been successfully employed for the extraction and separation of various metal ions. Rickelton and Robertson (15) have patented a method for the recovery of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) using monothiophosphinic acid and its salt. Rickelton and Boyle (16) have reported Cyanex 301 and Cyanex 302 as stronger extractants for the extraction of Zn(II) than their oxyacid counterpart Cyanex 272. The utility of these extractants has also been demonstrated for the recovery of Cd(II) from wet-process phosphoric acid solutions (17). Cyanex 301 has been used to recover Mn(II) and Zn(II) from battery waste (18). Besides this, use of Cyanex 301 for the extraction of Fe(III) (19), In(III) (20), Cu(II) (21), Co(II) and Ni(II) (22), Mo(VI) (23), Ni(II) (24), Sb(III) and Bi(III) (25), and Cr(III) (26) is also reported in the literature. However, these extractants have not been used so far for the extraction of Ti(IV). The lower pK_a value of these extractants compared to the parent compound make them an attractive choice to extract metal ions at a higher acidity; this advantage is par-

ticularly important for Ti(IV), which requires relatively higher acidity to prevent its hydrolysis.

This paper presents extraction data of Ti(IV) in Cyanex 301 and Cyanex 302 along with some other commonly associated metal ions such as Mg(II), Mn(II), Fe(III), Al(III), Ce(IV), and V(V). The effect of different variables on the extraction has been investigated. The composition of the extracting species has been proposed. Based on the partition data some binary separations from Ti(IV) have been achieved. The practical utility of the extractants has been demonstrated by recovering pure Ti(IV) from ilmenite and red mud. The loading and recycling capacities of the extractants have been determined.

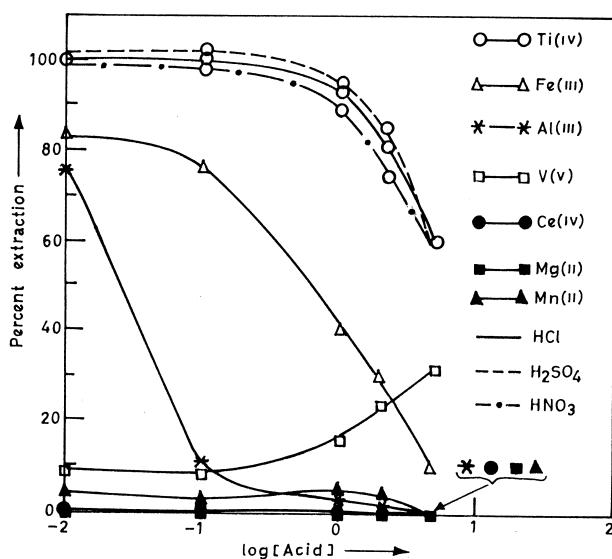
EXPERIMENTAL

Materials

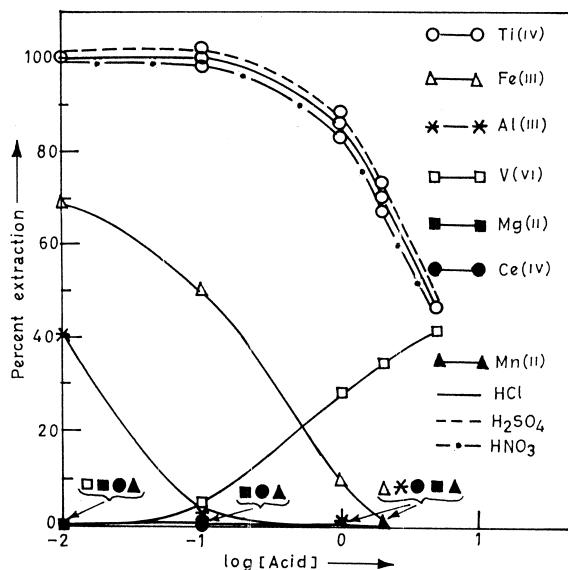
Stock solutions of metal ions were prepared by dissolving their chlorides/nitrates/sulphates in double distilled water containing a minimum amount of the corresponding mineral acid. Stock solutions were standardized by the usual complexometric titrations (27). All other chemicals and organic solvents were of Analytical Reagent/Synthetic Reagent grade from Qualigens/E.Merck, Mumbai (India). Kerosene of boiling fraction 160 to 200°C, which contains 65–75% aliphatic and 25–35% aromatic fractions was used.

Radioisotope of ^{141}Ce (IV) was procured from Board of Radiation and Isotope Technology, Bhabha Atomic Research Centre, Mumbai (India). Cyanex 301 (assay 77%) and Cyanex 302 (assay 84%) were received as gift samples from Cytec Industries, Niagara Falls, Ontario (Canada) and used as such without further purification. Samples of ilmenite (TiO_2 = 53%, Fe_2O_3 = 22%, FeO = 20%, MgO = 1.5%, MnO = 1%, Al_2O_3 = 0.6%, SiO_2 = 0.5%, and others) and red mud (TiO_2 = 21%, Fe_2O_3 = 33%, Al_2O_3 = 20%, SiO_2 = 6%, others = 10–20%) were obtained from Department of Earth Sciences, University of Roorkee, Roorkee (India) and Hindalco (India), respectively.

Equipment


Atomic Absorption Spectrometer (Perkin Elmer 3100) Perkin Elmer Corp., Norwalk, USA, and Inductively Coupled Plasma-Atomic Emission Spectrometer (Labtum ICP Spectrometer Plasmalab 8440) Labtum Ltd., Victoria (Australia) were used for the determination of metal ions in the aqueous phase for the distribution studies and in ilmenite and red mud. A well type NaI (Tl) Scintillation Detector (SC 6048), ECIL, Hyderabad (India) was used to measure the gamma activity of ^{141}Ce radioisotope.

Procedure


For the distribution studies equal volumes (10.0 mL) of the aqueous phase (metal ion solution in an appropriate mineral acid) and the organic phase (Cyanex 301 or Cyanex 302 in a suitable diluent) were shaken at room temperature ($25 \pm 2^\circ\text{C}$) for 5 min to ensure complete equilibration. The two phases were separated and suitable aliquots of each phase were assayed for radioactivity or employed for determination by ICP-AES/AAS. The experimental conditions for the various studies are mentioned with the corresponding data. Based on five observations, the value of percent extraction of Ti(IV) at about 90% extraction exhibits a coefficient of variation of $\pm 3\%$.

Samples of ilmenite or red mud were dissolved by following the method given elsewhere (28). About 1 g of powdered ilmenite or red mud was treated with a 10 mL mixture of concentrated H_2SO_4 and concentrated HF (1:5) containing a few drops of concentrated HNO_3 . The solution was evaporated to fumes to expel Si as SiF_4 . The paste was finally dissolved in 100 mL of 1 M HCl. These stock solutions of ilmenite and red mud solutions were diluted 10 times and labeled as Ai and Bi, respectively.

Figure 1. Effect of concentration of mineral acid on the extraction of metal ions in toluene solution of Cyanex 301. Conditions: [Metal Ion] = 1.0×10^{-3} M
[Cyanex 301] = 0.1 M

Figure 2. Effect of concentration of mineral acid on the extraction of metal ions in toluene solution of Cyanex 302. Conditions: [Metal Ion] = 1.0×10^{-3} M
[Cyanex 302] = 0.1 M

RESULTS AND DISCUSSIONS

Extraction Behavior

The extraction behavior of Ti(IV) and of other commonly associated metal ions, namely Mg(II), Mn(II), Fe(III), Al(III), Ce(IV), and V(V) (1×10^{-3} M) from 1×10^{-2} M to 5 M hydrochloric acid in 0.1 M toluene solutions of Cyanex 301 and Cyanex 302 is given in Fig. 1 and 2. In both the extractants Ti(IV) shows almost quantitative ($\geq 98\%$) extraction up to 0.1 M HCl, beyond which the extraction starts slowly declining to a value of $\geq 70\%$. Fe(III) and Al(III) show a decreasing trend with increasing acid molarity. The extraction of V(V) is low ($\geq 5\%$) and almost constant between 0.01 M to 0.1 M HCl and then shows slight increase with increasing acid molarity. Mg(II), Mn(II), and Ce(IV) show negligible extraction ($< 3\%$) over the entire investigated range of acid molarity. The extraction behavior of all the investigated metal ions from HNO₃ and H₂SO₄ media is more or less similar to that from HCl. As a representative case, the extraction behavior of Ti(IV) from HNO₃ and H₂SO₄ is shown in figures. The effect of var-

ious parameters were investigated at 1×10^{-3} M Ti(IV) concentration in 0.1 M HCl using 0.1 M extractant concentration unless otherwise stated.

Effect of Equilibration Time

The effect of equilibration time on the extraction of Ti(IV) using Cyanex 301 and Cyanex 302 was investigated, and it was observed that 2 min time is sufficient for complete equilibration. In all other studies the two phases were shaken for 5 min.

Diluent Effect

The extraction of Ti(IV) in both the extractants was studied using different solvents of varying nature. Toluene, *n*-hexane, cyclohexane, nitrobenzene, benzene, and kerosene (boiling fraction 160–200°C) were employed for the said purpose. The results (Table 1) indicate that there is quantitative extraction of Ti(IV) in all the diluents except chloroform where around 92% extraction is observed. It is also apparent that kerosene (160–200°C fraction) can replace toluene for commercial applications. There is no pronounced difference in the behavior of the two extractants.

Effect of Concentration of the Extractant

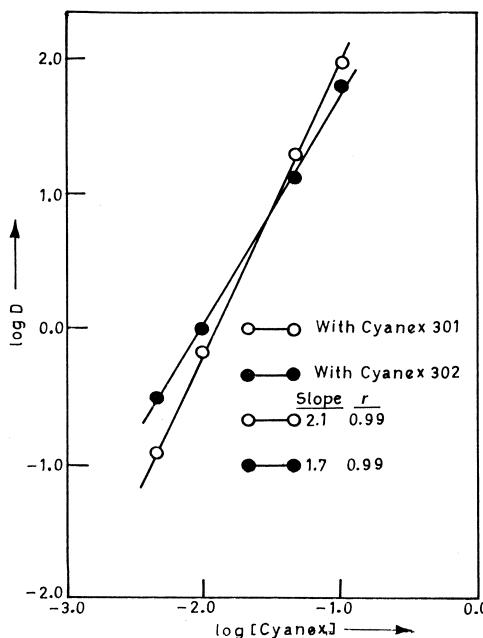

The effect of concentration of both the extractants (0.001–0.5M) on the extraction of Ti(IV) is shown in Fig. 3. There is an increase in the extraction with in-

Table 1. Extraction of Ti(IV) in Different Diluents of Varying Dielectric Constant Using Cyanex Extractants^a

Solvent	Dielectric Constant	Percent Extraction	
		Cyanex 301	Cyanex 302
<i>n</i> -hexane	2.00	96.2	95.1
Benzene	2.28	97.3	98.2
Cyclohexane	2.22	99.5	98.9
Toluene	2.44	99.1	99.3
Kerosene (160°–200°C)	2.02	99.0	99.4
Chloroform	4.80	92.3	92.5
Nitrobenzene	34.8	97.7	95.0

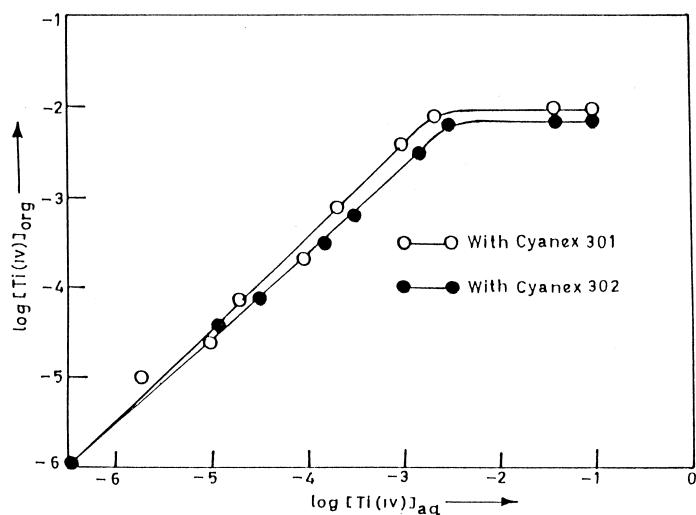
^a Conditions: [Metal ion] = 1.0×10^{-3} M, [HCl] = 0.1 M
 [Cyanex 301/302] = 2 (v) \times 0.1 M (toluene)

Figure 3. Effect of concentration of [Cyanex 301/Cyanex 302]_{total} on the extraction of Ti(IV) from hydrochloric acid medium. Conditions: [Ti(IV)] = 1.0×10^{-3} M [HCl] = 0.1 M

crease in the concentration of the extractants. The log-log plot between extractant concentration and distribution ratio in both the cases gives a straight line with a slope around two suggesting the involvement of two molecules of extractants in the formation of extracting species. The stoichiometry of the extracting species is 1:2 (metal:extractant). Assuming that Ti(IV) is mainly present as $\text{Ti}(\text{OH})_2^{2+}$ in the aqueous solution in the pH range 1.0–1.6 (29), the extracting species can be proposed as $\text{Ti}(\text{OH})_2\text{R}_2$ where HR = Cyanex 301/Cyanex 302, which acts as a cation exchanger. Similar species has been proposed by Katsuta and Yanagihara (30) for the extraction of Ti(IV) with acetylacetone in the pH range 1.09–1.55. The value of extraction coefficient (K) for Ti(IV) with the extractants is calculated using the following relation:

$$\log K = \log D - 2 \log [\text{HR}] - 2 \text{pH}$$

The values of K are found to be 85.1 ± 3 and 70.4 ± 3 for Cyanex 301 and Cyanex 302, respectively. A lower value of extraction coefficient with Cyanex 302 is on the expected lines as it is a weaker acid (31).



Effect of Concentration of Metal Ion

The effect of metal ion concentration (1×10^{-5} M–1 M) on the extraction of Ti(IV) has been investigated at 2 M HCl. The results of the loading of the extractant with varying concentration of Ti(IV) are shown in Fig. 4. A straight line in the concentration range 1×10^{-5} M– 1×10^{-2} M indicates that the distribution ratio does not change with increase in metal ion concentration, suggesting that the extracting species does not change in this concentration range. Beyond 1.0×10^{-2} M loading starts setting in, and it can be concluded from the plot that the extractant can hold the metal ion to a maximum of one-tenth of its molar concentration. Similar results have been obtained for the loading of Mo(VI) (23) and Ni(II) in Cyanex 301 (24).

Stripping of Ti(IV)

Various stripping reagents were tried for the stripping of Ti(IV) from the organic layer. Results are summarized in Table 2. Data indicate that 3% H_2O_2 in 0.5 M H_2SO_4 and 4 M HCl/ H_2SO_4 can be used for the quantitative recovery of Ti(IV). 3% H_2O_2 in 0.5 M H_2SO_4 was preferred for selective stripping of Ti(IV), as

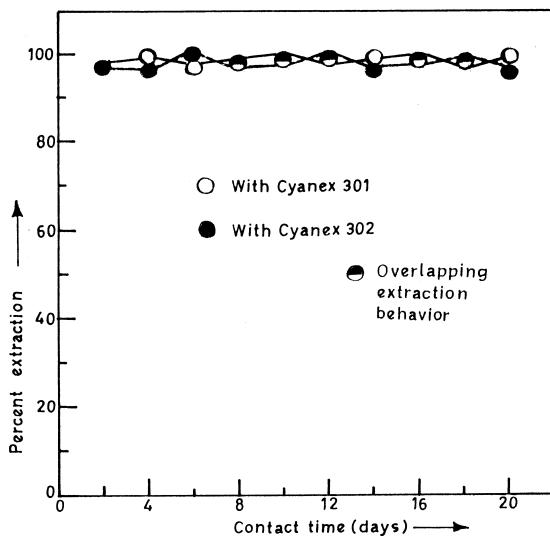
Figure 4. Extraction isotherm for the extraction of Ti(IV) from hydrochloric acid medium. Conditions: [Cyanex 301/Cyanex 302] = 0.1 M
[HCl] = 2 M

Table 2. Efficiency of Different Stripping Reagents for the Back Extraction of Ti(IV)^a

Stripping Reagent	Ti(IV) Recovered from Organic Phase (Percent)	
	Cyanex 301	Cyanex 302
0.1 M tartaric acid	25.6	37.6
0.1 M sodium citrate	15.9	25.2
0.1 M oxalic acid	33.3	43.4
0.1 M Na ₂ S ₂ O ₃	30.2	50.8
2 M HCl	45.0	52.3
4 M HCl	98.1	98.3
4 M H ₂ SO ₄	98.2	99.1
3% H ₂ O ₂ in 0.5 M H ₂ SO ₄	98.2	99.1

^a Conditions: [Metal ion] = 1.0×10^{-3} M, [HCl] = 0.1 M
[Cyanex 301/302] = 2 (v) \times 0.1 M (toluene)

Fe(III) is also stripped by 4 M HCl/H₂SO₄. The organic phase after stripping can be easily regenerated by washing it with water till the washings are neutral.


Hydrolytic Stability and Recycling Capacity of Extractants

The hydrolytic stability of Cyanex 301 and Cyanex 302 towards 0.1 M HCl was determined by keeping a toluene solution of extractant in contact with it. No decrease is observed in the percent extraction of Ti(IV) with the two extractants even after 20 days of contact (Fig. 5). However, the hydrolytic stability of the extractants towards HCl and H₂SO₄ for prolonged contact is well documented. (31,32). Experiments were also conducted to determine the recycling capacity of extractants by first loading them with Ti(IV) and then stripping with 3%H₂O₂ in 0.5 M H₂SO₄. The stripped organic phase was regenerated and used for extraction. The recovery of each step is calculated from the amount of Ti(IV) that gets extracted in the organic phase in that particular cycle. The results reveal practically insignificant change in the efficiency of the extractants up to 10 cycles (Fig. 6).

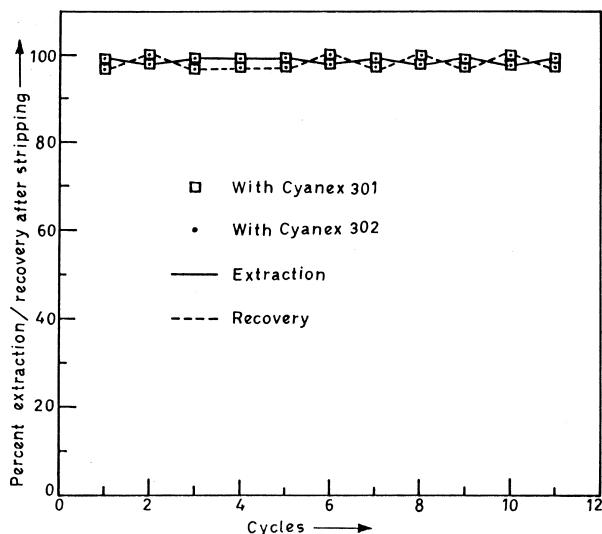
Separations

Based on the partition data, some binary separations of Ti(IV) from other associated metal ions can be achieved using Cyanex 301 or Cyanex 302. Both the

Figure 5. Variation in the extraction of Ti(IV). Conditions: [Metal ion] = 1.0×10^{-3} M
[Cyanex 301/302] = 0.1 M
[HCl] = 0.1 M

extractants are equally effective for the separation of Ti(IV) from Mn(II) and Ce(IV). In these separations Ti(IV) is extracted in the organic phase leaving the other in aqueous phase. Ti(IV) is then stripped from organic phase using 3% H_2O_2 in 0.5 M H_2SO_4 . However, for the separation of Ti(IV) from Al(III) and V(V) Cyanex 302 is preferred over Cyanex 301 because Al(III) and V(V) show relatively poor extraction in the former. For the separation of Ti(IV) from Fe(III), both the metal ions are first extracted in the organic phase by contacting twice. Ti(IV) is selectively stripped employing 3% H_2O_2 in 0.5 M H_2SO_4 followed by the stripping of Fe(III) using 0.1 M oxalic acid. Cyanex 301 is a preferred choice for this separation because of higher extraction of Fe(III) in it than Cyanex 302. The separation conditions and recoveries are summarized in Table 3.

Recovery of Ti(IV) from Ilmenite and Red Mud


In order to test the practical utility of the proposed methods Ti(IV) has been recovered from ilmenite and red mud by the mentioned procedure.

Ten milliliters of (A_i) or (B_i) solution were equilibrated twice with 10 mL

portions of 0.1 M extractant solution. Ti(IV) and Fe(III) along with the traces of Al(III) are extracted in the organic phase leaving behind other metal ions in solution. Ti(IV) is stripped from the organic phase by washing it twice with a 20 mL aliquot of 3% H_2O_2 in 0.5 M H_2SO_4 . (A_f) and (B_f) refer to the recovered Ti(IV) solution from ilmenite and red mud solution, respectively. Table 4 gives the compositions of A_i, B_i, and the recovered Ti(IV) solutions A_f and B_f. In the case of ilmenite, around 98% recovery of Ti(IV) is achieved, whereas it is around 97% in the case of red mud. The purity of this recovered titanium with respect to major impurities is around 99%. The organic layers can be regenerated by subsequently washing them with 2 \times 10 mL 0.1 M oxalic acid to remove Fe(III) and 2 \times 10 mL 0.1 M tartaric acid to remove Al(III). It is finally washed with water till the washings are neutral. The extractant is then ready to be reused.

Present investigations reveal that both the extractants are useful for the recovery of reasonably pure Ti(IV) from its sources. Almost quantitative recovery of Ti(IV) can be achieved in a wider acid molarity range using either of the two

Figure 6. Variation in the extraction/recovery of Ti(IV) in successive cycles.

Conditions: [Metal ion] = 1.0×10^{-3} M

[Cyanex 301/302] = 0.1 M

[HCl] = 0.1 M

Stripping Reagent = 3% H_2O_2 in 0.5 M H_2SO_4

Table 3. Separation of Ti(IV) from Mn(II), Fe(II), Al(III), Ce(IV), or V(V) Using Cyanex Extractants^a

No.	Metal Ion Separated	Aqueous Phase HCl (M)	Added Metal Ion (Ratios)	Extractant Cyanex	Mn(II)/Al(III)/Ce(IV)/V(V) Remaining in Aqueous Phase (%)	Ti(IV) ^b Recovered from Organic Phase (%)	Fe(III) ^c Recovered from Organic Phase (%)
1.	Ti(IV)-Mn(II)	0.1	1:1 1:10 10:1	301/302	97/96 96/96 97/97	98/97 97/98 98/96	97 99 98
2.	Ti(IV)-Fe(III)	0.1	1:1 1:10 10:1	301	97	98 98 99	97 99 98
3.	Ti(IV)-Al(III)	0.1	1:1 1:10 10:1	302	97	96 97 99	96 97 99
4.	Ti(IV)-Ce(IV)	0.1	1:1 1:10 10:1	301/302	96/98 96/98 97/99	97/98 97/99 97/99	97/98 97/99 97/99
5.	Ti(IV)-V(V)	0.1	1:1 1:10 10:1	302	96 95 98	98 99 99	98 99 99

^a Conditions: [Metal ion] = 1.0×10^{-4} to 1.0×10^{-4} (1:1), 1.0×10^{-4} to 1.0×10^{-3} (1:10), 1.0×10^{-3} to 1.0×10^{-2} (10:1), [Cyanex 301/302] = 0.10 M (toluene)

^b Ti(IV) stripped by using 2 (v) \times 3% H_2O_2 in 0.5 M H_2SO_4

^c Fe(III) stripped by using 2 (v) \times 0.1 M oxalic acid

Table 4. Composition of Ilmenite Solution (A) and Red Mud Solution (B) before and after Extraction with Cyanex 301/Cyanex302^a

No.	Sample	Metal Ion Separated	Concentration	Concentration	Percentage for	
			in A _i & B _i (mg/L)	in A _f and B _f (mg/L)	Recovery	Purity
1	Ilmenite	Ti(IV)	301.2	296.7	98 ± 2	99
		Fe(III)	312.7	0.1		
		Mg(II)	10.1	<0.1		
		Mn(II)	9.4	<0.1		
		Al(III)	4.2	<0.1		
		V(V)	1.0	<0.1		
		Ce(IV)	0.6	<0.1		
2	Red Mud	Ti(IV)	129.3	126.1	97 ± 2	99
		Fe(III)	210.2	0.8		
		Al(III)	99.2	0.2		
		Mg(II)	25.1	<0.1		
		V(V)	6.9	<0.1		
		Mn(II)	6.8	<0.1		

^a [Cyanex 301/302] = 2 (v) × 0.1 M (toluene)

<0.1 = Below detection limit

extractants. Moreover, the recycling power of both the extractants is good, thus suggesting the economic viability of the process.

CONCLUSIONS

The present findings show that Cyanex 301 and Cyanex 302 can be used to separate Ti(IV) from some commonly associated metal ions found in ilmenite and red mud. The proposed binary separations are conveniently achieved. Also, the separation efficiency is not significantly affected by a change in the molar ratio of the two metal ions involved. Moreover, toluene can be replaced by a cheaper diluent like kerosene (160–200°C boiling fraction). The extraction of Ti(IV) does not require a strict control of pH, and the separation from coextracted Fe(III) can be easily achieved by selective stripping. The extraction system can be used for the recovery of pure Ti(IV) from its ore and an important secondary sector material.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Prof. S. N. Tandon, Department of Chemistry, University of Roorkee, Roorkee (India), for his valuable

suggestions during the course of work. Thanks are due to American Cyanamid Company, USA for providing the samples of Cyanex extractants. Financial support of Council of Scientific and Industrial Research, New Delhi, India, is gratefully acknowledged.

REFERENCES

1. Lopez, R.N.; Collejan, M.M.; Guiraihe, A.P. *Talanta* **1986**, *33* (7), 587.
2. Simonenko, V.I.; Tyltin, A.Y.; Lysak, N.B.; Sukhan, V.V. *Ukr. Khim. Zh.* **1990**, *56*, 614.
3. Liang, S.; Xiao, H. *Yangkuang Ceshi* **1991**, *10*, 260.
4. Das, M.; Patel, K.S. *Ann. Chim. (Rome)* **1991**, *18*, 169.
5. Sundaramurthy, N.M.; Shinde, V.M. *Analyst (London)* **1983**, *114* (2), 201.
6. Sawant, M.A.; Khopkar, S.M. *Indian J. Technol.* **1983**, *21*, (11), 482.
7. Shah, N.; Desai, M.N.; Aggrawal, Y.K. *Int. J. Environ. Anal. Chem.* **1990**, *42*, 53.
8. Sato, T.; Nakamura, T. *Anal. Chim. Acta* **1975**, *76*, 401.
9. Islam, F.; Biswas, R.K. *J. Inorg. Nucl. Chem.* **1978**, *40*, 559.
10. Islam, F.; Biswas, R.K. *J. Bangladesh Acad. Sci.* **1981**, *5* (1), 61.
11. Phalke, P.N.; Sherikar, A.V.; Dhadke, P.M. *Indian J. Chem. (Sec. A)* **1997**, *36A* (5), 446.
12. Biswas, R.K.; Begum, D.A. *Hydrometallurgy* **1998**, *49*, 263.
13. Jayachandran, J.; Dhadke, P.M. *J. Chem. Eng. Jpn.* **1998**, *31* (3), 465.
14. Allal, K.M.; Hauchard, D. *Hydrometallurgy* **1997**, *45* (1–2), 113.
15. Rickelton, W.A.; Robertson, A.J. *Eur. Pat. Appl. EP 400311 (CI. C22133/34)* **1989**, 11.
16. Rickelton, W.A.; Boyle, R.J. *Solvent Extr. Ion Exch.* **1990**, *8* (6), 783.
17. Rickelton, W.A. *J. Metals* **1992**, *44* (5), 52.
18. Steiner, L.; Xing, M.; Hartland, S. *Process Metall.*, *7B* (Solvent Extr. Pt. B) **1990**, 1175.
19. Tait, B.K. *Solvent Extr. Ion Exch.* **1992**, *10* (5), 799.
20. Avila, R.M.; Cote, G.; Bayer, D. *Solvent Extr. Ion Exch.* **1992**, *10* (5), 811.
21. Sakurai, S.; Tachimori, S.; Pareau, D.; Durand, G. *Proc. Symp. Solvent Extr., (Japan)* **1993**, 49.
22. Tait, B.K. *Hydrometallurgy*, **1993**, *32* (3), 365.
23. Saily, A.; Tandon, S.N. *J. Liq. Chrom. Rel. Tech.* **1998**, *21* (3), 467.
24. Singh, R.; Khawaja, A.R.; Gupta, B.; Tandon, S.N. *Solvent Extr. Ion Exch.* **1999**, *17* (2), 367.
25. Sarkar, S.G.; Dhadke, P.M. *Separation and Purification Technology* **1999**, *15* (2), 131.
26. Khwaja, A.R.; Singh, R.; Tandon, S.N. *J. Environ. Eng.* **2000**, *04*, 307.

27. Meites, L. *Handbook of Analytical Chemistry*; McGraw Hill Book Company, Inc.: New York, 1963.
28. Scott, W.W. *Standard Methods of Chemical Analysis*; D. Van Nostrand Company Inc.: Princeton, NJ, 1959; Vol. I.
29. Katsuta, S.; Yanagihara, H. Solvent Extr. Ion Exch. **1999**, *17* (2), 392.
30. Baes, C.F.; Mesmer, R.E. *The Hydrolysis of Cations*; Wiley Interscience: New York, 1976.
31. Rickelton, W.A. American Cyanamid Company Technical Brochure, SPT **1989**, 039.
32. Rickelton, W.A. American Cyanamid Company Technical Brochure, SPT **1990**, 041.

Received February 16, 2000

Revised June 2000

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SS100102953>